Translocation of polymers with folded configurations across nanopores.
نویسندگان
چکیده
The transport of polymers with folded configurations across membrane pores is investigated theoretically by analyzing simple discrete stochastic models. The translocation dynamics is viewed as a sequence of two events: motion of the folded segment through the channel followed by the linear part of the polymer. The transition rates vary for the folded and linear segments because of different interactions between the polymer molecule and the pore. It is shown that the translocation time depends nonmonotonously on the length of the folded segment for short polymers and weak external fields, while it becomes monotonous for long molecules and large fields. Also, there is a critical interaction between the polymers and the pore that separates two dynamic regimes. For stronger interactions, the folded polymer moves slower, while for weaker interactions, the linear chain translocation is the fastest. In addition, our calculations show that the folding does not change the translocation scaling properties of the polymer. These phenomena can be explained by the interplay between translocation distances and transition rates for the folded and linear segments of the polymer. Our theoretical results are applied for analysis of experimental translocations through solid-state nanopores.
منابع مشابه
Quantized biopolymer translocation through nanopores: departure from simple scaling.
We discuss multiscale simulations of long biopolymer translocation through wide nanopores that can accommodate multiple polymer strands. The simulations provide clear evidence of folding quantization, namely the translocation proceeds through multifolded configurations characterized by a well-defined integer number of folds. As a consequence, the translocation time acquires a dependence on the ...
متن کاملControlling DNA capture and propagation through artificial nanopores.
Electrophorescing biopolymers across nanopores modulates the ionic current through the pore, revealing the polymer's diameter, length, and conformation. The rapidity of polymer translocation ( approximately 30,000 bp/ms) in this geometry greatly limits the information that can be obtained for each base. Here we show that the translocation speed of lambda-DNA through artificial nanopores can be ...
متن کاملHow polymers translocate through pores: memory is important.
Many biological processes, such as DNA and RNA transport across nuclear pores, injections of viral DNA, gene swapping, and protein transport across cellular membranes, involve the motion of polymer molecules across narrow channels (1). Translocation through nanopores is also one of the most important and powerful methods for analyzing properties of single biopolymer molecules and for investigat...
متن کاملFabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing
We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricat...
متن کاملSingle-molecule protein unfolding in solid state nanopores.
We use single silicon nitride nanopores to study folded, partially folded, and unfolded single proteins by measuring their excluded volumes. The DNA-calibrated translocation signals of beta-lactoglobulin and histidine-containing phosphocarrier protein match quantitatively with that predicted by a simple sum of the partial volumes of the amino acids in the polypeptide segment inside the pore whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 127 18 شماره
صفحات -
تاریخ انتشار 2007